
The instant when the droplet touched the surface was recorded in each experiment. 
Then from a certain instant of time when r I > R (r I is distance from the center to the 
first crest) through a time interval of At = i0 -~ sec distance r, and the distance between 
crests were determined: I z = Irz - r21, 12 = Ir~ - r~I- 

Represented in by curves 1-3 in Fig. 2 are the time dependences obtained rz(t), 11(t) , 
and 12(t). Each curve is a summary of experimental data for a wave system formed by drop- 
lets with different parameters. Time t = 0 is the instant of droplet contact with the sur- 
face. Broken lines refer to theoretical dependences which are easily obtained from (2) as- 
suming that o = 0.72 N/m, p = i000 kg/m ~, m = 0, i, 2 for r I, r2, r 3 respectively: r I = 
8.9 t 2/~, I z = rz - r2 = 6.3 t 213, 12= r 2 - r 3 = 3.2 t 2/~. The good agreement of experi- 
mental and theoretical data can be seen from Fig. 2. 
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INFLUENCE OF CAPILLARY FORCES ON THE NON- 

STATIONARY FALL OF A DROP IN AN UNBOUNDED 

FLUID 

L. K. Antanovskii UDC 532.68 

A large number of works are devoted to the problem of the dynamics of a viscous fluid 
drop (see [1-13]). At present the problem of the motion of a drop under the action of sur- 
face tension forces is of particular interest. These forces depend in essence on the tem- 
perature and concentration of surface-active substances (SAS) at the boundary separating 
the fluids. This interest is primarily determined by the requirements of chemical technol- 
ogy [3, 7] and the development of space studies [5, 14], where one must be able to predict 
the behavior of fluids in weak force fields and in conditions of weightlessness. In this 
work, an explicit solution is constructed for the linear problem of drop motion in an un- 
bounded fluid with SAS present. The number of SAS is arbitrary (to a first approximation, 
chemical reactions are not taken into account). 

Let a drop of viscous, incompressible fluid be located in another fluid with low SAS 
concentrations in solution, and let the drop begin slow motion under the action of variable 
acceleration of a volume force g(t) (t is the time). As a result of dilatation of the sepa- 
ration boundary F, the thermodynamic equilibrium of SAS is displaced in the volume and at 
the surface. This leads to an additional capillary force, which retards the motion of the 
drop. In other words, the Le Chatelier principle holds: the external action on a system 
in a stable state of thermodynamic equilibrium produces a reaction in the system which re- 
duces the effect of the external action. The latter important property of reactivity of 
capillary forces is directly related to the fundamental principles of thermodynamics. Con- 
sistent application of these principles makes it possible to write the equations of thermal 
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diffusion of SAS in the volume and at the separation boundary in symmetric form [12, 15], 
and to reasonably simply find a solution to the linearized problem. 

We assume that the weak concentration of SAS molecules and the temperature do not af- 
fect the physical properties of the drop and the surrounding fluid, but that they do change 
the coefficient of surface tension o. (The density p and dynamic viscosity coefficient ~ = 
p~ are piecewise constant on the surface of separation F). We write the Navier-Stokes equa- 
tions in a noninertial coordinate system (x, t), fixed to the center of mass of the drop, 
whose position in the observer's inertial coordinate system is given by the vector z(t). 
Assuming that at the initial instant of time, the spherical drop is at rest, we obtain the 
problem with a free boundary [16] 

pdv/d t  = pg - -  pd~z/dt ~ - -  div P, div v = 0 o u t s i d e  of F ; 

[ P . n ]  = divr(~VrX), dx[dt  = v, [v] = 0on F 

v -+ - -d z /d t ,  p - -  x . v p  -~  0 for Ixl --~ oo; 

v = O, z = O, dz /d t  = O, P = {]xl = a} for  t = O. 

(1) 

(2) 

(3) 

(4) 

Here w is the velocity; p the pressure; P = pl- 2~ is the pressure tensor (D is the defor- 
mation rate tensor); m is the unit normal vector; a is the mean radius of the drop; the lower 
index F denotes surface differential operators; the square brackets denote the operation of 
computing the jump in the function during transit of the surface F along m, namely: [F] = 
F+ - F_, F• = lim F(x + 6n(x)). 

6 ~ f 0  

N o t e  t h a t  div  r (oVrx) = Vro + oka (k i s  t h e  sum o f  t h e  p r i n c i p a l  c u r v a t u r e s  o f  r ) .  
T h e r e f o r e ,  f o r  v a r i a b l e  o ,  t h e  c a p i l l a r y  f o r c e s  n o t  o n l y  i n d u c e  a jump i n  t h e  p r e s s u r e  a t  
F,  b u t  a jump i n  t h e  t a n g e n t i a l  s t r e s s  a s  w e l l ,  w h i c h  c a n  s u b s t a n t i a l l y  a f f e c t  t h e  d r o p  d y -  
n a m i c s  [ 3 ] .  The q u a n t i t y  o i s  a t h e r m o d y n a m i c  p a r a m e t e r  a n d  c o n s e q u e n t l y  i s  d e t e r m i n e d  by 
t h e  t h e r m o d y n a m i c  s t a t e  o f  t h e  med ium.  

L e t  e be  t h e  s p e c i f i c  d e n s i t y  and  ~ t h e  s u r f a c e  d e n s i t y  o f  i n t e r n a l  e n e r g y ;  c t h e  v o l -  
ume a n d  y t h e  s u r f a c e  c o n c e n t r a t i o n  o f  SAS m o l e c u l e s ;  a nd  q a nd  j be  t h e  v e c t o r  f l u x e s  o f  
h e a t  a n d  SAS i n  t h e  f l u i d .  Then  t h e  d i f f e r e n t i a l  l a w s  o f  c o n s e r v a t i o n  o f  e n e r g y  a n d  SAS 
mass  a r e  w r i t t e n  i n  t h e  f o r m  

(5) 

(6) 

(7) 

(8) 

pde/dt = 2~ID] 2 - -  div q o u t s i d e  o f  I" ; 

pdc/dt = - - d i v  j outs ide of F ; 

& / d t q -  e d i v r v  = o d i v r v - -  [q .n]  on F; 

d ? / d t +  7 d i r t y  = - - [ j - n ]  o n F .  

We choose the absolute temperature 8 and the SAS chemical potential ~ as the indepen- 
dent thermodynamic parameters. Then the extensive variables can be expressed as partial 
derivatives of the thermodynamic potential f(0, ~) in the volume 

s = - - a ] / a o ,  c = - a / / a ~ i  e = / - o a / / a o  - ~ a / / a ~  (9) 

and by the coefficient of surface tension o(e, ~) on the surface r [17] 

= --O~lO0, ? = - - O o / O ~ ,  e = ~ - -  000100 - -  ~OalO~ ( 1 0 )  

( s ,  q a r e  t h e  s p e c i f i c  a n d  s u r f a c e  e n t r o p y  d e n s i t i e s ) .  I n  v i e w  o f  t h e  c o n c a v i t y  o f  f (%,  ~) 
and 0(8, ~), the matrices of their second derivatives are negative definite [15]; the 
Onsager relations lead to 

- - h  = K n v 0 + K n v ~  , - - j  = K21VO + K~2V~ ( 1 t )  

with symmetric positive definite matrices {Kij} (h is the entropy flux vector). 

Using (9)-(11), Eqs. (5)-(8) in intensive variables {8, ~} can be written in symmetric 

(12) 

(13) 

(14) 

(15) 

f o r m  [15 ]  

pd(--S//OO)/dt = fro - -  div h outs ide of F; 

pd(--O//O~)/dt = - - d i v  j outs ide of F ; 

d(--O~/OO)/dt = (0~]00 )d i v r  v -  [q .n]  on F; 

d(--Oa/O~)/dt = (Oa/O~) divr  v - -  [ j . n ]  on F; 
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[ 0 l  = [~ l  = 0 on p (16) 

(~ = (2plDI 2 --h'V@ --j'V~)/@ is the dissipation function). Equation (15) comes from the 
principle of local thermodynamic equilibrium. Equations (i)-(4), (11)-(16) together with 
initial data for 8 and ~ completely determine the dynamics of the drop in the presence of 
SAS. 

Relations (11)-(16) are generalized in a natural way for the case of many SAS, taking 
into account their flux along F. Let �9 = {~i} be the set of intensive thermodynamic parame- 
ters (in the previous case, ~i = O, ~ = ~), and f(Y), ~(~) the specific and surface densi- 
ties of the Gibbs potential, which are concave functions of ~. By introducing the notation 

0~  (~) ~ (~) ~ s  (~) _ 0"9 (~) ~ (~) _ , ~ (~) _ , 
8TiOTj ' OTiOTj OT i 

we obtain the system 
/ 

pB~Jd~s/dt : div  (K~JvTs) q- ~P~ ou t s ide  of r ; ( 1 7 )  
/ 

~3~)dTj]dt = ~ d i r t y  + [KiJOvJc~n] + d i v r  (xiJVr~j) + qb~, [Ti] = 0  ]on F. ( 1 8 )  

H e r e  r e p e a t e d  i n d i c e s  a r e  summed,  a n d  t h e  s y m m e t r i c  m a t r i c e s  {B•  { K i j } ,  { ~ i j } ,  a n d  {KiJ}  
a r e  p o s i t i v e  d e f i n i t e .  The  d i s s i p a t i o n  f u n c t i o n s  0 i ,  r  w h i c h  c a n  a c c o u n t  f o r  c h e m i c a l  
reactions, for simplicity will be assumed to be quantities of second order smallness com- 
pared to the perturbations w, T i on the state of rest. Therefore their exact form is imma- 
terial. 

We introduce the dimensionless parameter ~ =max{l[p]glaS/pv}, which we assume is much 
less than unity, which is a priori ensured for a sufficiently small drop. For 5 = 0 there 
is an exact solution to (1)-(4), (17), (18) 

{~(~/a for I x l < a ,  
T~ = const .  r = { I x l = a } ,  v = 0 ,  p =  fo r  I x l > a ,  

We l i n e a r i z e  t h e  p r o b l e m  i n  t h i s  p a r a m e t e r ,  k e e p i n g  t h e  p r e v i o u s  n o t a t i o n  f o r  t h e  p e r -  
t u r b a t i o n s  v ,  p ,  ~ i -  We f i n d  a s  a r e s u l t  

Or~at = g - -  d2z/dt 2 - -  VP/P j -  r a y ,  div  v = 0 ou t s ide  of . r ;  ( 1 9 )  

[ P - n l  = d iv r  ( ~  ~VrX),  Iv] = 0, v . n  = 0on F; ( 2 0 )  

v --~ - -d z / d t ,  p - -  x . v p  - ~  0 fo r  Ix] - ~  co; ( 2 1 )  

9Bi~O~/Ot = K~JATs ou t s i de  of r ; ( 2 2 )  

~jijOTj/,'Ot = ~yi d i v r  v -~ [K~Jc~/cOn] @ x~Jhr~s, ( 2 3 )  

[ z l ] - - O  on F; 

v = O, z = O, dz /d t  = O, ~i = 0 ~for t = O. ( 2 4 )  

The coefficients of {Bij} and {Kij}..(and p., p, and ~ as well) are piecewise constant with a 
surface of discontinuity F, and {~lj}, {KIJ}, {oij} are constants, since they are computed 
for a state of equilibrium. In addition, the fact that problem (19)-(24) admits an: exact 
solution for spherical free boundaries [ii] is considered. 

We temporarily assume that g = g(t)e (e is a fixed unit vector) and we introduce a 
spherical coordinate system (r, @, ~) such that r = Ixl, and cos ~ = e-x/Ixl. Then it is 
possible to seek an axisymmetric solution of the form 

v~ = - -  2r - l~(r ,  t) cos ~,  ve ---- r - l  {O(rq~(r, t))/Or} sin ~,  

�9 i = %i(r, t) c o s ~ ,  z = z(t)e 

( ~ ( r ,  t ) ,  x i ( r ,  t ) ,  z ( t )  a r e  t h e  unknown f u n c t i o n s ) .  A f t e r  a L a p l a c e  t r a n s f o r m  i n  t i m e ,  
considering the homogeneity of the initial data, we have the following problem 

S~(u * -- ~ * )  ---- 0 for  r ~ a; ( 2 5 )  

@* = 0, [%b*] ---- 0, [O~*/Or] = 0, ( 2 6 )  

[txO2~*/Or ~1 " * = ( 2 7 )  Oz)~i/a for r a; 

O~2*/Or, ~*]r  --~ ~z*/2 fo r  r - *  oo ; 
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p~B~J%~ = Ki~S2y~ f o r  r=#a; ( 2 8 )  

p %j = 2 {~0r + •  + ( 2 9 )  

a [p] (g* - -  s = [3 {r (~$2 ,  * - -  pk**)}/~r] - -  2~%?/a fo r  r = a. ( 3 0 )  

H e r e  S 2 f  = r - : { 8 ( r 2 8 f / O r ) / S r  - 2 f } :  t h e  n o r m a l  ~ = x / a  c o m p l e t e l y  d e t e r m i n e s  t h e  s i g n  o f  t h e  
j ump ;  t i s  t h e  c o n j u g a t e  v a r i a b l e  o f  t h e  L a p l a c e  t r a n s f o r m .  

I t  i s  e v i d e n t  t h a t  t h e  g e n e r a l  s o l u t i o n  t o  Eqs .  ( 2 5 )  and ( 2 7 )  c an  be  r e p r e s e n t e d  as  
[11]  

~z*  (s r/2 + AI (k)/r ~ + A2 (~) H (r ]/ '%~+) fo r  r > a, 

�9 * ( r , I ) = I A ~ ( X ) r + A a ( k ) H ( r V ~ _ ~ _ )  for  r < a ,  

where the function H($) = (e-$/~)' for r > a, H(~) = (sinh$/~)' for r < a (the prime denotes 
differentiation); v+, ~_ are the viscosity of the external fluid and the drop, in accord- 
ance with the choice of normal; the function Ak(%) in the terms z*(%) and X*i(r, ~) must be 
determined from conditions (26), (28)-(30). We note that because of the integral identity 

S r~S~ (~ S ~ *  - -  P ~ * )  dr + a ~ [~ {r-~ ( ~ S ~  * - -  p~**)}/~r] = 
0 

= lira r~O {r-~ (~tS~ * - -  p~r = 3p+~A~ (~) 

condition (30) takes on the form a~[p](g *- ~z*)= 3p+XAi(~). 

The general solution of differential equations (28) is written as 

%~ (r, ~) = E ~  H (r /~-YC) F~C~ (~) 
H (a l/~-7-~m) 

({Xm} are the roots of the polynomial det(p~Bij - Kij), the matrix {Emi} is determined by 

the equations (PkmBij - Kij)Emj = 0 and {Fim} = {Emi}-l). Evidently, such matrices {Emi} 

and {Fim} exist and the numbers {Xm} are positive, since the constant matrices {Bij} and 
{KI3} are symmetric and positive definite. Of course, this procedure must be independently 
carried out for the outer and inner fluids with appropriate choice of functions H($). The 
functions Ci(X) = X*i(a, ~) are found in (29), which in turn contains ~*(r, ~). After the 
requisite computations, we obtain the law for the motion of the center of mass of the drop 

X~m*(E)z*(X) = (Po - -  P)g*(E). ( 3 1 )  

Here m* (~) = po + - ~  + gM* (;~.___A. 
2a2)~ ' 

t t l 

M* ()~) - ~tX (a V~]u + 2~ + 3btoXo (a V~-~0) +2Q (M; 

X ( ~ ) =  I + { ,  X ~ ( { ) = ( 6 4 - ~ 2 ) ~ - - 3 ( 2 + ~ 2 ) t h ~ -  
3[(3+~2) th~--3~] ' 

Q(X) = Q i j ( x ) o i o j ;  Q i j ( X )  i s  t h e  i n v e r s e  o f  t h e  p o s i t i v e  d e f i n i t e  m a t r i x  w i t h  e l e m e n t s  

R" (~) = za~, + 2~-1~, + 2K'~ErZ (~ V~-TZ~) F~ + 

@ ~o ~Oh[Jo 

Z ( ~ ) = l ~  2 ( t + ~ ) '  Z 0 (~ )=  ~ - - t h  

( t h e  i n d e x  0 r e f e r s  t o  a l l  q u a n t i t i e s  r e l a t e d  t o  t h e  d r o p ) .  

Since X(0)=X0(0) = Z(0) = Z0(0) = i, then for constant acceleration of external forces 
g we have the asymptotic velocity of the drop for t § ~: 

dz 2a ~ , ( 3~ + 3/Xo + 2q a ) ( 3 2 )  
dt ~ -  (P0 - -  P) g - -  , - -  = 2 ~  + 3 ~  0 + 2q V ~ t  + o (t -~/~) 

q = Q (O)agd R ij (0) = 2 a - i x  i~ + 2K ~j + K~o ~ 

(in [12], the factor 2 is missing in front of q). Equality (32) for q = 0 (pure boundary 
separation) contains the well-known Hadamard-Rybzynski formula [i, 2]. With growth in q, 
the velocity of descent of the drop is retarded, and in the limit q = co (32) is transformed 
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into the Stokes formula [7]. This is the limit obtained for P0 § ~; therefore accounting 
for the capillary forces has the effect of increasing the viscosity of the drop D0 (see the 
detailed discussion in [3]). 

In the nonstationary case, the appearance of the term 2Q(1) in (31) leads to growth of 
M*(k), which reduces the rate of acceleration of the drop regardless of the dependence on 
the sign of o i. It is this latter which practically indicates the validity of the Le Chate- 
lier principle in the most general case. Of course, this assertion is based on the posi- 
tivity of the quadratic form Q(k), which in turn stems from the fundamental principles of 
thermodynamics: maximum entropy for a closed system and minimum entropy production for an 
open system close to equilibrium (the Onsager principle is a particular variant [18]). 

We note that (31) can be written in the form of Newton's law 

m*(d2z/dt~) = (P0 -- P)g, (33)  

where the effective "mass" m(t) plays the role of convolution operator with symbol m*(~): 

t 

m,--~( t )  + -~( t )  + ~-~a2~M(t--[)dz(~) 
0 

(M( t )  has  t h e  L a p l a c e  t r a n s f o r m  M * ( k ) ) .  M o r e o v e r ,  in  (33)  i t  i s  p o s s i b l e  t o  c o n s i d e r  t h a t  
g ( t )  has  v a r i a b l e  d i r e c t i o n ,  s i n c e  t h e  s u p e r p o s i t i o n  p r i n c i p l e  i s v a l i d  f o r  l i n e a r  e q u a t i o n s  
[ 1 3 ] .  

We assume that at the initial moment, there is a weakly linear distribution of inten- 
sive parameters T i = Wi'X. After similar calculations, we obtain the law of motion of the 
center of mass of the drop 

m*(d~z/dt2) = (Po --  P)g -~ f~, (34)  

where  t h e  c a p i l l a r y  f o r c e  f o ( t )  has  t h e  L a p l a c e  t r a n s f o r m  

f~ (~) = _ 3a- in* (s (~), 

L* (X) = ~X (a V~75) 
2~ + ~X (a V~7~) + 3~0X 0 (a ~ 0 )  + 2Q (~) ' 

= + ( K  - 

I t  f o l l o w s  f rom t h e  p r o p e r t i e s  o f  s o l u t i o n s  Of l i n e a r  p a r a b o l i c  e q u a t i o n s  t h a t  Vx i a t  i n f i n -  
t J~  " i t y  w i l l  a lways  c o i n c i d e  w i t h  wi ,  and h e r e f o r e  w. . i (h )  = w i / ~ .  E v i d e n t l y ,  t o  a f i r s t  a p p r o x -  

i m a t i o n ,  f o r m u l a  (33)  can  be u sed  as  a c l o s e d  fo rm,  p h e n o m e n o l o g i c a l  model  o f  t h e  m o t i o n  o f  
an e m u l s i o n  by i d e n t i f y i n g  t h e  v e c t o r  w i w i t h  t h e  l o c a l  g r a d i e n t  Vx i a t  t h e  p o i n t  where  t h e  
d rop  i s  l o c a t e d ,  which  changes  w i t h  t i m e  and has  L a p l a c e  t r a n s f o r m  w*i (~  ) .  In  t h e  o ne -  
d i m e n s i o n a l  c a s e  T = @, (34)  i s  an e x a c t  r e s u l t  [ 1 1 ] ,  where  t h e  work o f  d i l a t a t i o n  o f  t h e  
s u r f a c e  F i s  n o t  t a k e n  i n t o  a c c o u n t  in  t h e  e n e r g y  e q u a t i o n .  In  c o n c l u s i o n ,  n o t e  t h a t  t h e  
c a p i l l a r y  f o r c e s  t e n d  t o  m i n i m i z e  t h e  t o t a l  Gibbs  themodynamic  p o t e n t i a l ,  which  draws t h e  
d rop  t o  r e g i o n s  o f  s m a l l e r  v a l u e s  o f  s u r f a c e  t e n s i o n  a .  
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THE KOENIG FORCE IN A COMPRESSIBLE FLUID 

A. A. Doinikov and S. T. Zavtrak UDC 534:532.529.6 

In publications referring to the Koenig force (see, for example [1-3]), it is assumed 
that the acoustic wavelength is much larger than the separation between the dispersed parti- 
cles. Such an assumption allows fluid compressibility to be neglected, but it is valid only 
for low frequency waves. On the other hand, in practice, for instance in ultrasound tech- 
nology, radiation of quite high frequency (i04-i0 s Hz [4]) must be considered. The wave- 
length of such radiation can be comparable to or even smaller than the separation between 
particles while remaining many times larger than their dimension. Obviously the neglect of 
fluid compressibility is then unjustified. The question arises: how does the structure of 
the Koenig force change when fluid compressibility is taken into account? This paper gives 
an answer to the question. 

Thus we need to compute the force of radiative interaction (the Koenig force) of two 
rigid spherical particles whose centers execute small oscillations of circular frequency 
when the separation ~ between the particles is comparable to the acoustic wavelength ~ = 
2~cm -I. The speed of sound in the fluid is c, and the particles have radii R I and R 2. 

We examine the issue of small parameters. First, we assume that two standard condi- 
tions are satisfied: the fluid vibration is potential, that is, w = V~ (~ is the potential 
of the fluid velocity w); and lwl/c << I. The latter condition is indicative of the small 
amplitude of the wave field. Second, in the solution to the analogous problem for an in- 
compressible fluid, two other small parameters are used: kR1, 2 << i and k~ << i (k = m/c is 
the wavenumber), with kRi,2 << ks Their small magnitude and the relation between them fol- 
lows from the assumption RI, 2 << ~ << ~. Relaxing the requirement ~ << ~ means that only 
one small parameter, kRi,2, remains in which to carry out all expansions. 

It is well known that radiation forces, including the Koenig force, are quadratic in 
the field. Considering this, the problem can be formulated thus: we must find the leading 
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